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Abstract
Based on an 85 molecule database, linear regression with different size datasets and an artificial neural network approach have
been used to build mathematical relationships to fit experimentally obtained affinity values (Ki) of a series of mono- and
bis-quaternary ammonium salts from [3H]nicotine binding assays using rat striatal membrane preparations. The fitted results
were then used to analyze the pattern among the experimental Ki values of a set of N-n-alkylnicotinium analogs with increasing
n-alkyl chain length from 1 to 20 carbons. The affinity of these N-n-alkylnicotinium compounds was shown to parabolically
vary with increasing numbers of carbon atoms in the n-alkyl chain, with a local minimum for the C4 (n-butyl) analogue.
A decrease in Ki value between C12 and C13 was also observed. The statistical results for the best neural network fit of the 85
experimental Ki values are r2 ¼ 0.84, rmsd ¼ 0.39; rcv

2 ¼ 0.68, and loormsd ¼ 0.56. The generated neural network model
with the 85 molecule training set may also be of value for future predictions of Ki values for new virtual compounds, which can
then be identified, subsequently synthesized, and tested experimentally.
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Introduction

Nicotine, the major alkaloid in tobacco, is the addictive

compound that maintains tobacco smoking behavior

[1–2]. Tobacco smoking is the number one cause of

preventable mortality, and is responsible for over 4

million smoking-related deaths world-wide each year

[3]. Although 70% of the 50 million people that smoke

tobacco have attempted to quit, only 3% of those

individuals maintain cessation for a period of one year

using currently available therapies. Consequently,

relapse rates for tobacco smoking continue to be high,

indicating that novel smoking cessation therapies are

needed [3].

Nicotine produces its effects on the central nervous

system (CNS) by interacting with nicotinic acetyl-

choline receptors (nAChRs) that are essential for

synaptic transmission. nAChRs consist of five protein

subunits which transverse the neuronal cell mem-

brane. The most common nAChR subtype is a4b2*,

which accounts for over 90% of the high-affinity

[3H]nicotine binding sites in brain [4]. a4b2*
nAChRs have been recognized as a major therapeutic

target for mediating several CNS pathologies and

diseases, including tobacco dependence [3,4].

A variety of a4b2* agonists and antagonists have

been discovered [5,6]. Previous research [7–13] in

our laboratories has led to the discovery of a new class

of nAChR antagonists composed of a series of mono-

and bis-quaternary ammonium salts [13]. Among

these are the N-n-alkylnicotinium salts that vary in the

length of their N-n-alkyl chains [11]. After attachment

of an n-alkyl chain to the pyridine nitrogen atom of the

nicotine molecule, the properties of the resulting novel

compounds are significantly altered. The pKa value
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of the nitrogen of the pyrrolidine ring drops from 8.5

to about 6 [14], and the compound is converted from

an agonist to an antagonist at nAChRs [11,12]. These

novel compounds exhibit potent and competitive

inhibition of nAChR subtypes mediating S-(-)-

nicotine-evoked dopamine release from dopaminergic

nerve terminals in superfused rat striatal slices [11],

and may have potential as smoking cessation agents,

due to their selective antagonist activity at these

nAChR subtypes [11].

An interesting phenomenon observed in the

structure-activity profile of the N-n-alkylnicotinium

series of compounds is that the experimentally

measured Ki values obtained from the [3H]nicotine

binding assay (which probes the a4b2* nAChR

subtype) afforded a greater diversity in pharmacologi-

cal response than might be expected for a homologous

series of compounds where the N-n-alkyl chain length

varies from C1 to C20. However, these data can be

mined to identify associations that can then provide

insights for future drug design studies. Generally

speaking, data mining (sometimes called data or

knowledge discovery) is the process of analyzing data

from different perspectives and summarizing it into

useful information. Technically, data mining is the

process of discovering previously unknown relation-

ships (correlations) or hidden patterns among a

group of data in a database [15]. In this study, linear

regression and artificial neural network approaches

were used to analyze the pattern among the experi-

mentally determined binding affinities (Ki values) at

the a4b2* nAChR subtype for a set of N-n-

alkylnicotinium salts that varied in the length of their

N-n-alkyl chains. The generated quantitative struc-

ture-activity relationship (QSAR) models are also

valuable for predicting the affinity of hypothetical

molecules as antagonists at a4b2* nAChR subtypes

which can then be identified as structures of interest,

and therefore seriously considered for synthesis and

pharmacological evaluation.

Materials and methods

Experimental database

A database of eighty-five mono- and bis-quaternary

ammonium compounds with experimentally deter-

mined Ki values from the [3H]nicotine binding assay

was available. The [3H]nicotine binding assay utilized

rat striatal membrane preparations to probe the

interaction of the analogs with the a4b2* nAChR

subtype [11]. Of the 85 molecules in the database,

the Ki values of 7 of the molecules were # 0.1mM,

13 molecules had Ki values in the range 0.1–1mM, 26

molecules had Ki values in the range 1–10mM, and 39

molecules had Ki values $10mM. This database was

utilized for the linear and non-linear regression

analyses (Table I).

Generation of molecular descriptors

Molecular modeling was carried out with the aid of the

Sybyl discovery software package [16a]. This software

was used to construct the initial molecular structures

utilized in the geometry optimization (energy mini-

mization) for all molecules involved in this study.

The geometry optimization was first performed using

a molecular mechanics (MM) method with the Tripos

force field and the default convergence criterion,

which was then followed by a semi-empirical

molecular orbital (MO) energy calculation at the

PM3 level [16b].

A set of 530 descriptors, including OD,1D, 2D and

3D whim descriptors, were calculated by the DRA-

GON program [17] for these optimized molecules.

In addition, a variety of other molecular properties,

such as polar volume and polar surface area, were

produced by use of the Tripos software package [16a].

Other steric descriptors were measured from the

optimized 3D molecular structures, including the

intra-molecular distance between the pyridine ring

nitrogen and the pyrrolidine ring nitrogen in the

nicotine derived molecules. The PM3 method was

used to determine the LUMO, HOMO energies,

dipole moments, and atomic charges of each molecule

[16]. Pre-filtering for constant and pair-wise corre-

lation (.0.95) descriptors were performed, and a

stepwise procedure was carried out to select variables

from the remaining 143 descriptors.

Target properties

Experimentally determined Ki values of the syn-

thesized quaternary ammonium analogs were

measured according to the procedure described by

Dwoskin et al. [11]. The log(1/Ki) or pKi (with Ki

value in mM) was used as the target property for

performing linear regression and neural network

analyses.

Linear regression analysis

Linear least squares regression and multiple linear

regression (MLR) analyses were performed utilizing

an in-house Fortran77 program. Starting from the

entire set of descriptors, variable selection by a

forward and reverse stepwise regression procedure

was performed, in which forward selection was

followed by backward elimination of variables,

resulting in an equation in which only variables that

significantly increased the predictability of the

dependent variable were included [18a].

Artificial neural network (ANN) analysis

Feed-forward, back-propagation-of-error networks

were developed using a neural network C program

F. Zheng et al.158
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Table I. Structures, experimentally determined pKi values (with Ki value in mM) from [3H]nicotine binding assays, and pKi values (with Ki

value in mM) calculated by the NN731 model and its leave-one-out validation results for 85 quaternary ammonium salts†.

No. Cmpd Name R pKi (Expt) pKi (NN) pKi (NNLOO)

Nicotine

N

N
CH3

H

H
HSO4

1 NIC 2.7 2.59 2.44

N-Alkylnicotinium Salts

N

N CH3

R

H
X , X = Br or I

2* NMNI CH3 20.55 20.36 20.26

3* NENI n-C2H5 20.02 20.37 20.65

4* NPNI n-C3H7 21.33 20.59 20.25

5* NnBNI n-C4H9 21.04 20.60 20.51

6* NHxNI n-C6H13 0.28 20.61 20.84

7* NHpNI n-C7H15 20.32 20.59 20.67

8* NONI n-C8H17 21.29 20.44 20.24

9* NNNI n-C9H19 0.08 20.25 20.32

10* NDNI n-C10H21 1.05 0.23 0.01

11* NDDNI n-C12H25 0.85 0.70 0.56

12* GZ511A n-C13H27 20.42 20.29 20.38

13* GZ511B n-C14H29 20.85 20.35 0.01

14* GZ512A n-C15H31 0.96 0.65 0.54

15* GZ512B n-C16H33 1.07 0.81 0.74

16* GZ521A n-C17H35 1.28 1.40 1.41

17* GZ521B n-C18H37 1.85 1.46 1.25

18* GZ522B n-C20H41 0.89 1.22 2.14

19 NONB-7M (CH2)6CH(CH3)2 20.37 20.21 20.15

20 NCyNB-4 cyclobutyl-(CH2)6CH(CH2)3 20.66 20.49 20.47

21 NCyNB-5 cyclopentyl-(CH2)6CH(CH2)4 20.74 20.47 20.84

22 NCyNB-6 cyclohexyl-(CH2)6CH(CH2)5 20.86 20.41 0.13

23 NBzNB CH2C6H5 20.43 20.33 20.22

24 NANI CH2CHvCH2 20.32 20.34 20.33

25 NONB-3c cis-(CH2)2CHvCH(CH2)3CH3 1.10 20.56 20.77

26 NONB-3t trans-(CH2)2CHvCH(CH2)3CH3 20.65 20.50 20.47

27 NONB-7e (CH2)6CHvCH2 0.34 0.18 0.24

28 NONB-3y (CH2)2CC(CH2)3CH3 0.70 0.14 20.39

29 NONB-6e7m (CH2)5CHvCH(CH3)2 0.35 20.39 20.49

30 NDNB-4c cis-(CH2)3CHvCH(CH2)4CH3 20.87 0.05 0.29

31 NDNB-4t trans-(CH2)3CHvCH(CH2)4CH3 0.49 0.69 0.49

32 NDNB-9e (CH2)8CHvCH2 1.30 1.51 0.41

33 NDNB-3y (CH2)2CC(CH2)5CH3 0.24 0.70 0.64

34 NUNB-10e (CH2)9CHvCH2 0.80 0.77 1.17

bis-N,N0-Alkylnicotinium Salts

N N

N

N CH3

H3C

R

2X , X = Br or I

35 bNHxI (CH2)6 21.30 21.09 20.87

36 bNOI (CH2)8 20.19 20.11 20.07

37 bNNB (CH2)9 20.70 20.63 20.24

QSAR of quaternary ammonium analogs for a4b2 nicotinic ACh receptor 159
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Table I – continued

No. Cmpd Name R pKi (Expt) pKi (NN) pKi (NNLOO)

38 bNDI (CH2)10 0.48 20.01 20.13

39 bNUB (CH2)11 0.37 0.05 20.19

40 bNDDB (CH2)12 20.29 0.00 0.63

N-Alkylpyridinium Salts

N R

I

41* NMPI CH3 21.30 21.27 21.25

42* NEPI n-C2H5 21.46 21.21 21.17

43* NPrPI n-C3H7 21.63 21.38 21.37

44* NBuPI n-C4H9 20.98 21.13 21.14

45* NPePI n-C5H11 20.94 21.30 21.36

46* NHxPI n-C6H13 20.96 21.17 21.16

47* NHpPI n-C7H15 21.18 21.33 21.34

48* NOPI n-C8H17 21.30 21.20 21.15

49* NNPI n-C9H19 21.28 21.39 21.38

50* NDPI n-C10H21 21.22 21.47 21.48

51* NUPI n-C11H23 21.23 21.51 21.53

52* NDDPI n-C12H25 22.08 21.53 21.51

53* NPeDPI n-C15H31 21.58 21.28 21.17

54 NAPB CH2CHvCH2 21.75 21.76 21.26

55 JTO cis-CH2CHvCH(CH2)4CH3 21.12 20.97 20.85

56 JCO trans-CH2CHvCH(CH2)4CH3 21.28 21.25 21.24

57 LO CH2CC(CH2)4CH3 21.24 21.44 21.45

58 MO (CH2)6CHvCH2 21.05 21.33 21.35

59 LN CH2CC(CH2)5CH3 21.46 21.32 21.28

60 JTN cis-CH2CHvCH(CH2)5CH3 21.4 21.14 21.00

61 JCN trans-CH2CHvCH(CH2)5CH3 21.38 21.36 21.37

62 LD CH2CC(CH2)6CH3 20.98 21.08 21.00

63 MU (CH2)9CHvCH2 21.09 20.93 20.80

64 NU (CH2)9CCH 20.93 21.06 20.48

N-Alkyl-3-picolinium Salts

N R

I

H3C

65* NNPiI n-C9H19 21.79 21.53 21.50

66* NDPiI n-C10H21 21.41 21.48 21.51

bis-N,N0-Alkylpyridinium Salts

N NR

2X ,  X = Br or I

67 bPHxI (CH2)6 21.99 21.72 21.63

68 bPOI (CH2)8 21.54 21.66 21.69

69 bPNB (CH2)9 21.38 21.41 21.33

70 bPDI (CH2)10 21.27 21.55 21.59

71 bPUB (CH2)11 21.15 21.69 21.73

72 bPDDB (CH2)12 20.96 21.65 21.70

bis-N,N0-Alkyl-3-picolinium Salts

N N

CH3

H3C 2X  ,    X = Br

R

73 bPiNB (CH2)9 21.90 21.68 21.55

74 bPiUB (CH2)11 21.84 21.44 20.71
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[18]. Network weights (Wji(s)) for a neuron “j”

receiving output from neuron “i” in the layer “s” were

initially assigned random values between 20.5 and

þ0.5. The sigmoidal function was chosen as the

transfer function that generates the output of a

neuron from the weighted sum of inputs from the

preceding layer of units. Consecutive layers were

fully interconnected; there were no connections

within a layer or between the input and the output. A

bias unit with a constant activation of unity was

connected to each unit in the hidden and output layers.

The input vector was constructed from the set of

descriptors for each molecule in the database, as

generated by the previous steps. All descriptors and

targets were normalized to the [0,1] interval.

The network was configured with one or more hidden

layers. To find the optimal number of neurons in the

hidden layer, neural network architectures with

different inputs and hidden neurons, respectively,

were trained. During the ANN learning process, each

compound in the training set was iteratively presented

to the network, i.e. the input vector of the chosen

descriptors in normalized form for each compound

was fed to the input units, and the network’s output

was compared with the experimentally determined

“target” value. During one “epoch”, all compounds in

the training set were presented, and weights in the

network were then adjusted on the basis of the

discrepancy between network outputs and observed

pKi values by back-propagation, using the generalized

delta rule [18].

Quality evaluation of regression analyses

A key point in any data mining process is quality

evaluation of a mathematical analysis. It serves two

purposes: i.e. to help identify the mathematical model

that best represents the pattern in training data, and to

predict how well the final model will work in the future

[15]. As the total number of data points used in the

Table I – continued

No. Cmpd Name R pKi (Expt) pKi (NN) pKi (NNLOO)

75 bPiDDB (CH2)12 21.69 21.65 21.69

bis-N,N0-Alkylquinolinium Salts

N N

2X ,  X = Br or I

R

76 bQHxI (CH2)6 21.59 21.35 21.08

77 bQNB (CH2)9 21.35 21.73 21.87

78 bQUB (CH2)11 21.58 21.70 21.75

bis-N,N0-Alkylisoquinolinium

N N
+ +

2X , X = Br or I

R

79 bIQHxI (CH2)6 21.25 21.27 21.24

80 bIQOI (CH2)8 21.82 21.45 21.27

81 bIQNB (CH2)9 20.90 20.93 21.03

82 bIQUB (CH2)11 20.96 20.52 0.04

83 biQDDB (CH2)12 20.79 21.24 21.47

bis-Quaternary Ammonium Salts

N N

CH3

H3C

H3C

H3C

CH3

CH3

R

2Br

84 HEX (CH2)6 21.34 21.40 21.45

85 DEC (CH2)12 20.76 21.21 21.45

* Compounds were used in the 32 molecule dataset for mutilinear regression analysis; † All compounds and experimental data in this table

were generated in the laboratories of Dr. Peter A. Crooks and Dr. Linda P. Dwoskin. Most of these data have been published in References

7–13 and 20. Compounds 12–18 and their Ki values have not been published previously.
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current study was less than 100, to obtain a precise

estimate, the models generated with linear or non-

linear mathematical approaches were validated by

leave-one-out (LOO or loo) cross validation.

The models were assessed by the Pearson correlation

coefficient r2, root mean square deviation (rmsd), and

predictive rcv
2 , which is defined as:

r2
cv ¼

SD2 PRESS

SD
ð1Þ

where SD is the sum of squared deviations of each

measured pKi value from its mean, and PRESS is the

predictive sum of squared differences (the sum of

squared differences between actual and predicted

values). The final mathematical relationship was

determined as the one having the smallest rmsd

error of LOO validation for various linear or

non-linear regression analyses.

Results and discussion

Results from linear regression analysis

The most widely used modeling method to fit data is

linear least squares regression. Least squares fitting

(LSF) with a single variable of the number of carbon

atoms in the N-n-alkyl chain, was first used in this

study to build a simple linear relationship, i.e.

Equation (2), to fit the affinity pKi values of the 17

N-n-alkylnicotinium salts (Compounds 2–18 in

Table I).

pKi ¼ 0:112x2 1:012 ð2Þ

The computational pKi obtained from Equation (2)

showed a linear relationship of the binding affinity

(pKi values) with the variation in the length of the

N-n-alkyl chain. Assessment of the least-squares

model indicated that the correlation coefficient r2 of

the regression from fitting was 0.46, which is less than

0.5 (Table II/Table IV); thus, this is not a statistically

significant model.

Multiple linear regression analysis was then used to

model the relationship between the pKi values of the

17 N-n-alkylnicotinium salts with more explanatory

variables. By searching the 143-descriptor variable

space with a forward and reverse stepwise variable

selection procedure, a linear model MLR1 (Equation

(3)), was obtained:

pKi ¼ 0:532 þ 6:083 £ E1m 2 20:921 £ Gm ð3Þ

where E1m corresponds to the 1st component

accessibility directional whim index / unweighted by

atomic masses (the slash stands for divided by), and

Gm corresponds to G total symmetry index / weighted

by atomic masses, calculated by Dragon software [17].

The correlation coefficient between these two

descriptors was 20.83. The computed affinity of the

N-n-alkylnicotinium salts for the a4b2* nAChR

subtype varied parabolically with increasing length of

the N-n-alkyl chain (Figure 1b). A local minimum was

found when the number of carbon atoms in the n-alkyl

chain was equal to 4. The statistical analysis for the

regression indicated that the correlation coefficient r2

and rmsd between the observed and the fitted results

was 0.51 and 0.66, respectively (Table II). The leave-

one-out validation rcv
2 was 0.38 and the leave-one-out

rmsd was 0.75 (Table II). The Pearson correlation

coefficients between calculated and observed pKi

values of the 17 molecules from fitting and LOO

validation were 0.71 and 0.62 (Table IV), respectively.

To confirm the detected patterns from the above

analysis, a multi-linear regression approach with a larger

dataset was used to examine the relationship between

the affinity of theN-n-alkylnicotinium salts at thea4b2*
nAChR subtype and increasing length of the n-alkyl

chain. The dataset included 32 molecules (Table I)

composedof 17N-n-alkylnicotiniumsalts (Compounds

2–18 in Table I), 13 N-n-alkylpyridinium salts

(Compounds 41–53 in Table I), and two N-n-

alkylpicolinium salts (Compounds 65 and 66 in

Table I). With a forward and reverse stepwise variable

selection procedure, six descriptors E2u, Hy, LUMO,

Me, Du and RDSUM, as defined in Table IIIa, were

selected. A lower inter-correlation between these

descriptors (non-diagonal element is larger than 0.85

in Table IIIb) indicated the possibility that the chance

correlation for a linear equation built from these

descriptors is low. A linear model (MLR2) between

the six descriptors and the pKi values of these 32

molecules was generated. Statistical analysis of the

Table II. Quality of linear regression and ANN models.

Model Training cycles r2 rmsd rcv
2 loormsd

LSF(17 mols) 0.46 0.69 0.33 0.77

MLR1(17 mols) 0.51 0.66 0.38 0.75

MLR2(32 mols) 0.79 0.48 0.71 0.57

MLR3(85 mols) 0.72 0.52 0.67 0.57

NN711(85 mols) 1000000 0.76 0.48 0.66 0.57

NN721(85 mols) 100000 0.82 0.42 0.68 0.56

NN731(85 mols) 80000 0.84 0.39 0.68 0.56

NN741(85 mols) 40000 0.82 0.42 0.66 0.57

Table IIIa. Brief description of the descriptors used the linear

regression relationship (MLR2) with a 32-molecule dataset.

Descriptor Definition

E2u 2nd component accessibility directional

WHIM index / unweighted.

Hy Hydrophilic factor.

LUMO LUMO molecular orbital energy.

Me Mean atomic Sanderson electronegativity

(scaled on Carbon atom).

Du D total accessibility index / unweighted.

RDSUM Reciprocal distance Wiener-type index.

F. Zheng et al.162
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regression showed that the correlation coefficient r2 was

0.79 with an rmsd of 0.48; leave-one-out validation rcv
2

was 0.71 with an rmsd value of 0.57 (Table II).

The linear equation is as follows:

pKi ¼ 130:228 2 2:729 £ LUMO þ 0:071

£ RDSUM þ 41:877*Hy 2 120:776*Me

2 6:022*E2u þ 16:178 £ Du ð4Þ

The calculated pKi values from Equation (4) for the 17

N-n-alkylnicotinium compounds versus the number of

carbon atoms in the N-n-alkyl chain were plotted in

Figure 1c. The fitting and validation Pearson correlation

(R) between the experimental pKi and computational

pKi values for the 17 N-n-alkylnicotinium molecules

was 0.73 and 0.62, respectively (Table IV), which is

similar to those obtained from MLR1. The compu-

tational results consistently showed that the affinity of

the N-n-alkylnicotinium salts at the a4b2* nAChR

subtype parabolically varied with increasing length of

the N-n-alkyl chain. A local minimum was found when

the numberof carbon in theN-n-alkyl chain wasequal to

four carbons atoms. Equation (4) was built by best

fitting the affinity of 32 mono-nicotinium salts for the

a4b2* nAChR subtype, which helps reduce or eliminate

the effects of experimental noise or error in analyzing the

affinity of the N-n-alkylnicotinium salts for the a4b2*
nAChR subtype.

Results from neural network regression analysis

The artificial neural network (ANN) technique has

been demonstrated recently to be an effective tool for

data mining and has been used in many QSAR studies

[19–23]. The major advantage of ANN lies in its

ability to model a wide set of linear and non-linear

functions, without knowing the analytic forms in

advance. The ANN approach is especially suitable for

mapping complex relationships that may exist

between model inputs and output. To identify the

best correlation between the observed and calculated

pKi values for the set of 85 compounds in the database

we followed the same procedures as described

previously for descriptor selection and determination

of the optimal ANN configuration [18a,18b,24,25].

Variable selection from the dataset of 143 descriptors

for the 85 molecules was carried out by a stepwise

MLR procedure based on forward-selection and

backward-elimination methods and located seven

descriptors for an optimal multi-linear regression

Equation (5) (MLR3). This afforded a correlation

coefficient r2 of 0.72 with an rmsd of 0.52; leave-one-

out validation rcv
2 of 0.67 with an rmsd value of 0.57

(Table II).

pKi ¼ 1:804 2 0:006*PV þ 0:072*PSA

þ 0:524*LUMO þ 0:250*DISNN

2 0:165*L2u þ 0:013*RDSUM

þ 0:486*MAXDP ð5Þ

The inputs for the best ANN model were composed of

the seven descriptors in Equation (5) i.e. polar volume

(PV), polar surface area (PSA), lowest unoccupied

molecular orbital energy (LUMO), distances between

nitrogen atoms (DISNN), 2nd component size

directional Whim index (L2u), reciprocal distance

Wiener-type index (RDSUM), and maximal electro-

topological positive variation (MAXDP), as indicated

in Table Va. The correlation coefficient between the

different descriptors is provided in Table Vb. No non-

diagonal element was larger than 0.60 in Table Vb,

indicating that redundant information included in the

set of descriptors is low. Although the four configur-

ations of the neural networks listed in Table II afforded

close validation statistical results, the configurations

NN721 and NN731 had a lower chance to be under-

trained or over-trained for the 85 molecule dataset.

The statistical results for model NN731 were as

follows: r2 ¼ 0.84, rmsd ¼ 0.39, rcv
2 ¼ 0.68, and

loormsd ¼ 0.56. The trained and LOO predicted

versus observed pKi values from NN731 were plotted

in Figure 2.

The experimental and calculated pKi values versus

the number of carbon atoms in the N-n-alkyl chain of

the 17 nicotinium salts are plotted in Figure 1e–h.

Table IIIb. Pearson correlation coefficient R between the

descriptors used in MLR2 model.

Eu Hy LUMO Me Du RDSUM

Eu 1.00 0.21 20.24 0.28 0.22 20.18

Hy 1.00 20.15 0.85 20.49 20.62

LUMO 1.00 20.11 20.20 0.78

Me 1.00 20.36 20.47

Du 1.00 20.02

RDSUM 1.00

Table IV. Correlation between the observed pKi values from the

[3H]nicotine binding assay and the calculated pKi values for the

series of 17 N-n-alkylnicotinium salts from various models.

Model LSF MLR1 MLR2 MLR3

R (Fitting) 0.68 0.71 0.73 0.70

Rmsd(Fitting) 0.69 0.66 0.65 0.73

R (LOO) 0.58 0.62 0.62 0.60

Rmsd(LOO) 0.77 0.75 0.75 0.77

Model NN711 NN721 NN731 NN741

R (Fitting) 0.71 0.83 0.86 0.85

Rmsd(Fitting) 0.67 0.53 0.48 0.50

R (LOO) 0.59 0.61 0.68 0.65

Rmsd(LOO) 0.77 0.77 0.71 0.73
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Figure 1. pKi values versus the number of carbon atoms in the N-n-alkyl chain of the N-n-alkylnicotinium salts from: a. [3H]nicotine binding

assays; b. the MLR1 model with 17 molecules; c. the MLR2 model with 32 molecules; d. the MLR3 model with 85 molecules; e. the NN711

model; f. the NN721 model; g. the NN731 model; and h. the NN741 model with 85 molecules.
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Affinities of the N-n-alkylnicotinium salts predicted by

NN711 (Figure 1e) show that increasing the length of

the N-n-alkyl chain results in a linear increase in the

affinity of the compounds for a4b2* nAChRs, which

is similar to Figure 1d (results obtained from MLR3).

The lower correlation coefficient 0.71 for fitting and

0.59 for LOO validation between the computational

and experimental pKi values of the set of 17

homologous compounds (Table IV) indicated that

the nature of the pattern among the set of data had not

been fully identified. a4b2* nAChR affinities of the N-

n-alkylnicotinium salts predicted by both NN721

(Figure 1f) and NN731 (Figure 1g) showed that

increasing the length of the n-alkyl chain resulted in a

parabolic variation in affinity. A possible decrease in

pKi values may occur for some compounds with

n-alkyl chain lengths ranging from C12 to C14.

The plot (Figure 1h) from NN741 had a very similar

pattern to that from NN731. The pattern detected by

NN731 afforded the best fit and validation Pearson

correlation (0.86 and 0.68, respectively) with the

observed data (Table IV). The pattern in Figure 1a

[experimentally obtained affinity values (pKi) versus

the number of carbon atoms in the n-alkyl chain] was

somewhat random, which is an interesting observation

for further investigation. Generally, it is expected that

the pKi values would vary continuously, according to

the basic chemical variation rule for a homologous

series of compounds. The simplest interpretation for a

decrease in the pKi values for compounds with n-alkyl

chain lengths in the range C12 to C13 from the pattern

obtained from computational approaches, is that

the binding site on the protein may be limited in size,

and may not be able to accommodate the larger

N-substituted molecules up to this point.

The subsequent increase in the pKi values observed

with molecules bearing N-n-alkyl substituents greater

in length than C13 would suggests that these

compounds with longer n-alkyl substituents bind to

the receptor protein in a different manner, or at a

different binding site. However, this remains to be

proven in further studies.

Descriptor contributions to computational neural

network models have been proposed and/or applied by

several scientists [18, 24–27]. Utilizing the method

proposed by Guha and Jurs [25], the results of the

descriptor sensitivity analysis for NN731 showed that

the percent contribution of the seven descriptors was:

PV (14.3%), PSA (14.1%), LUMO (14.2%), DISNN

(14.6%), L2u (13.9%), RDSUM (14.0%), and

MAXDP (14.7%). The very similar percentage values

for these seven descriptors suggest that the contri-

butions of these descriptors to the model are almost

equal. It should be noted that the above descriptor

sensitivity analysis is related to a specific model.

The parameters (weights) and transfer functions

related to a single neuron in a neural network model

also contribute to the power of the model’s predictivity.

In addition, a predictive model can be built from

different sets of descriptors. Thus the descriptors

having an important role in predicting target property

are not limited only to the descriptors used to build the

model. The correlation existing between the number of

carbon atoms in an n-alkyl chain of a drug molecule

containing a variable length n-alkyl substituent and the

properties of these molecules, is well-known. These

compounds, defined as members of a homologous

series, have similar, as well as continuously varied

properties. For example, a loss of potency as one

ascends a homologous series of compounds is often

used to map the dimensions of binding sites on a

protein target [28]. Thus, whether these properties are

modeled or not, the correlation is known to exist.

The correlation between the number of carbon atoms

in the alkyl chain of the N-n-alkylnicotinium salts and

the properties of the molecule is another example of the

above. With the small dataset of the N-n-alkylnicoti-

nium salts utilized in this current study, one has only a

limited appreciation of the relationship between the

binding affinity and the length of the n-alkyl chain

in these compounds. Neural network analysis can

provide a much more comprehensive view of the

Table Va. Brief description of the descriptors used in the ANN

models.

Descriptor Definition

PV Polar volume.

PSA Polar surface area.

LUMO LUMO molecular orbital energy.

DISNN Distances between nitrogen atoms.

L2u 2nd component size directional Whim index.

RDSUM Reciprocal distance Wiener-type index.

MAXDN Maximal electrotopological positive variation.

Table Vb. Pearson correlation coefficient R between the descriptors used in the ANN models.

PV PSA LUMO DISNN L2u RDSUM MAXDP

PV 1.00 0.11 20.27 0.40 20.19 0.60 0.16

PSA 1.00 0.18 0.11 20.02 20.04 0.37

LUMO 1.00 0.53 0.25 20.38 0.43

DISNN 1.00 0.34 0.37 0.49

W 1.00 0.33 0.11

RDSUM 1.00 0.11

MAXDP 1.00
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structure-activity relationships because of its ability to

model a wide set of linear and non-linear functions,

without knowing the analytic forms in advance.

However, with a small number of compounds, the

full predictive power of neural network analysis cannot

be utilized, due to possible overtraining problems.

Generally, when a dataset includes less than 40

compounds, back propagation neural network analysis

will just model patterns that are not much different

from linear function modeling. In this current study,

we built more predictive models to detect patterns

from a larger number of 85 compounds, by utilizing the

advantages of the neural network approach and, in a

creative way, graphically expressed the relationship of

the binding affinity of the N-n-alkylnicotinium salts

with the number of carbon atom in the n-alkyl chain

from the neural network modeling results. Obviously,

whereas a linear relationship can only detect major

features, such as the longer the alkyl chain, the larger

the pKi value of a compound (Figure 1d,e). Figure 1b–

c,f–h with a higher coefficient R value and smaller

RMSD (Table IV) show the affinity values (pKi) vary

near-parabolically with increasing alkyl chain length

with a local minimum at C4. From Table IV, one can

also see that a higher R (Fitting) corresponds to a better

R(LOO), which makes the results more reliable.

Table VI indicates that 10 nicotinium analogs from

the set of 85 mono- and bis-quaternary ammonium

salts had absolute error values between the exper-

imental and calculated pKi values of larger than 0.80,

either in training or leave-one-out, or in both, when

comparing the observed and calculated pKi values in

model NN731. The original training correlation

coefficient r2 of the 85 molecule dataset from the

neural network model NN731 was 0.84 with an rmsd

of 0.39; leave-one-out rcv
2 was 0.68 with an rmsd of

0.56. After removing the 10 compounds listed in

Table VI from the trained model, the statistical

analysis showed that the training correlation coeffi-

cient r2 for the remaining data was 0.92 with an rmsd

of 0.25; leave-one-out rcv
2 was 0.80 with an rmsd of

0.41. Apparently, the difficulty in obtaining a better

model from the dataset of 85 compounds is mainly

due to the error associated with the experimental data

from the nicotinium series of compounds. The same

conclusion holds in the analysis of the data obtained

from model NN721.

Comparsion with the previously published computational

models

As an important target for drug development, several

modeling approaches have been carried out in order to

understand quantitative structure-activity relation-

ships of ligands that bind to nAChR subtypes. Two

recent reviews that report on ligand-based models of

neuronal nAChR agonists, involving either pharmaco-

phore development or quantitative structure-affinity

relationships, have been reported by Glennon et al. and

Nicolotti et al., respectively [29–30] More recently,

QSAR studies in this area that focus on specific types of

analogs, have also been reported [31–35]. With regard

to quaternary ammonium nAChR antagonists, QSAR

studies on a series of mono- and bis-quaternary

ammonium salts have been reported by Ayers et al.
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Figure 2. The calculated versus the experimentally determined

pKi values from the [3H]nicotine binding assay for the trained

(shown in black squares), leave-one-out cross-validation (shown in

red diamonds) for the best NN731 QSAR model. The solid line

represents a perfect correlation. The dotted lines represent one

order difference from the perfect fitting. Most points around the

dotted lines correspond to the N-n-alkylnicotinum compounds in

Table VI.

Table VI. Compounds with large errors between the experimentally determined pKi values from [3H]nicotine binding assays and calculated

pKi /LOO pKi values by model NN731.

pKi (expt.) pKi (NN731) Diff. pKi (NN731LOO) Diff.

NONB-3C 1.10 20.56 1.66 20.77 1.86

NDNB-4C 20.87 0.05 20.92 0.29 21.16

NONB-6e7m 0.35 20.39 0.74 20.49 0.83

NHxNI 0.28 20.61 0.89 20.84 1.12

GZ-511B 20.85 20.35 20.50 0.01 20.85

NPNI 21.33 20.59 20.74 20.25 21.09

NDNI 1.05 0.23 0.82 0.01 1.04

NONI 21.29 20.44 20.86 20.24 21.05

NONB-3Y 0.70 0.14 0.55 20.39 1.08

NCYNB-6 20.86 20.41 20.45 0.13 20.99
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[36]. In the study of Ayers et al, the Self Organizing

Maps (SOM) approach was used to classify the

compounds according to their structures and activities.

Several genetic functional approximation models were

created to simulate the quantitative structure-activity

relationships from three small subsets of compound

datasets (i.e., sets of 31, 38 and 23 compounds).

Our current work focuses on the pattern detection

for the affinity of N-n-alkyl quaternary ammonium

salts in the [3H]nicotine binding assay using rat striatal

membranes versus the number of carbon atoms in the

N-n-alkyl substitiuent by mining knowledge from 17,

32 and 85 molecule datasets. Models generated from

this larger 85-molecule dataset may provide additional

power for future prediction of Ki values of new virtual

compounds.

Conclusions

Linear regression and neural network approaches have

been used to build mathematical relationships to

compute the binding affinity of a series of mono- and

bis-quaternary ammonium salts in [3H]nicotine bind-

ing assays using rat striatal membranes. These results

were then used to analyze the pattern among the

experimentally determined affinities (Ki values) of a

set of 17 N-n-alkylnicotinium salts for the a4b2*
nicotinic receptor subtype. The affinity of these N-n-

alkylnicotinium compounds was shown to vary

parabolically with increasing length of the n-alkyl

chain, with a local minimum indicated for the C4

analogue. A decrease in pKi values for compounds

with n-alkyl chain lengths of C12 and C13 was also

evident. The generated neural network model with the

larger 85 molecule training set may provide additional

power for future prediction of Ki values of new virtual

compounds, prior to their synthesis and pharmaco-

logical evaluation.
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